注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

新立数学家园

我们欣赏数学,我们需要数学。

 
 
 

日志

 
 

抽屉原理(第2课时)  

2010-05-10 15:28:48|  分类: 人六年级(下) |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

 

第二课时

教学目标:  

1、通过观察、猜测、实验、推理等活动,寻找隐藏在实际问题背后的“抽屉问题”的一般模型。体会如何对一些简单的实际问题“模型化”,用“抽屉原理”加以解决。  

2、在经历将具体问题“数学化”的过程中,发展数学思维能力和解决问题的能力,感受数学的魅力。同时积累数学活动的经验与方法,在灵活应用中,进一步理解“抽屉原理”。

教学准备:  

一个盒子、4个红球和4个蓝球为一份,准备这样的教、学具若干份。  

教学过程  

一、创设情境,直接导入

学习例3:

师:盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,最少要摸出几个球?请同学们猜一猜!

预设学生猜想: 

1、只摸两个球就能保证是同色的。

2、摸3个球就能保证有2个是同色的。

3、摸出5个球,肯定有2个是同色的。

。。。。。。

二、动手操作,验证猜想

独立思考----组内交流----动手操作----验证猜想

此环节教师要参与到小组活动中,要注意引导学生把“摸球问题”与“抽屉问题”联系起来。

 学生汇报交流,分析推理   

小组汇报探究的过程与结果。其他小组有不同想法可以补充汇报。汇报时可以借助演示来帮助说明。

达成统一认识。即:本题中,要想摸出的球一定有2个同色的,最少要摸出3个球。 

引导学生在反思中学习推理,新旧知识沟通联系。  

问题:1、为什么至少摸出3个球就一定能保证摸出的球中有两个是同色的?  

2、例题3和“抽屉问题”有联系吗?说说你们的理解。

请学生先想一想,再和同桌说一说,最后全班交流。

得出结论:“抽屉数”就是“颜色数”,“要保证摸出两个同色的球,摸出的球的数量至少要比颜色种数多1。”

注意:在实际问题和“抽屉问题”之间架起一座桥梁并不是一件容易的事。因此,教师应有意识地引导学生朝这个方向思考,慢慢去感悟。逐步引导学生把具体问题转化为“抽屉问题”,并找出这里的“抽屉”是什么,“抽屉”有几个。一共有红、蓝两种颜色的球,就可以把两种“颜色”看成两个“抽屉”。

三、巩固练习,加深理解

1、师:请同学们反过来思考一下,至少摸出5个球,就一定能保证摸出的球中有几个是同色的? 

2、做一做

  评论这张
 
阅读(535)| 评论(1)
推荐 转载

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2018